Smooth line plots
3 minute read
W&B는 세 가지 유형의 평활화를 지원합니다:
- 지수 이동 평균 (기본값)
- 가우시안 평활화
- 이동 평균
- 지수 이동 평균 - Tensorboard (더 이상 사용되지 않음)
대화형 W&B report에서 실시간으로 확인하세요.

지수 이동 평균 (기본값)
지수 평활화는 이전 점의 가중치를 지수적으로 감쇠시켜 시계열 데이터를 평활화하는 기술입니다. 범위는 0에서 1 사이입니다. 배경 정보는 지수 평활화를 참조하세요. 시계열의 초기 값이 0으로 치우치지 않도록 편향 제거 항이 추가되었습니다.
EMA 알고리즘은 선의 점 밀도 (x축 범위 단위당 y
값의 수)를 고려합니다. 이를 통해 특성이 다른 여러 선을 동시에 표시할 때 일관된 평활화가 가능합니다.
다음은 내부 작동 방식에 대한 샘플 코드입니다:
const smoothingWeight = Math.min(Math.sqrt(smoothingParam || 0), 0.999);
let lastY = yValues.length > 0 ? 0 : NaN;
let debiasWeight = 0;
return yValues.map((yPoint, index) => {
const prevX = index > 0 ? index - 1 : 0;
// VIEWPORT_SCALE scales the result to the chart's x-axis range
const changeInX =
((xValues[index] - xValues[prevX]) / rangeOfX) * VIEWPORT_SCALE;
const smoothingWeightAdj = Math.pow(smoothingWeight, changeInX);
lastY = lastY * smoothingWeightAdj + yPoint;
debiasWeight = debiasWeight * smoothingWeightAdj + 1;
return lastY / debiasWeight;
});
앱에서 어떻게 보이는지 살펴보세요:

가우시안 평활화
가우시안 평활화 (또는 가우시안 커널 평활화)는 점의 가중 평균을 계산하며, 가중치는 평활화 파라미터로 지정된 표준 편차를 갖는 가우시안 분포에 해당합니다. 자세한 내용은 . 평활화된 값은 모든 입력 x 값에 대해 계산됩니다.
TensorBoard의 동작과 일치하는 데 관심이 없다면 가우시안 평활화는 평활화를 위한 좋은 표준 선택입니다. 지수 이동 평균과 달리 점은 값 이전과 이후에 발생하는 점을 기반으로 평활화됩니다.
앱에서 어떻게 보이는지 살펴보세요:

이동 평균
이동 평균은 주어진 x 값 이전과 이후의 창에서 점의 평균으로 점을 대체하는 평활화 알고리즘입니다. https://en.wikipedia.org/wiki/Moving_average의 “Boxcar Filter"를 참조하세요. 이동 평균에 대해 선택된 파라미터는 Weights and Biases에 이동 평균에서 고려할 점의 수를 알려줍니다.
점이 x축에서 고르지 않게 배치된 경우 가우시안 평활화를 사용하는 것이 좋습니다.
다음 이미지는 이동 앱이 앱에서 어떻게 보이는지 보여줍니다:

지수 이동 평균 (더 이상 사용되지 않음)
TensorBoard EMA 알고리즘은 x축 단위당 플롯된 점의 수가 일관되지 않은 동일한 차트에서 여러 선을 정확하게 평활화할 수 없으므로 더 이상 사용되지 않습니다.
지수 이동 평균은 TensorBoard의 평활화 알고리즘과 일치하도록 구현됩니다. 범위는 0에서 1 사이입니다. 배경 정보는 지수 평활화를 참조하세요. 시계열의 초기 값이 0으로 치우치지 않도록 편향 제거 항이 추가되었습니다.
다음은 내부 작동 방식에 대한 샘플 코드입니다:
data.forEach(d => {
const nextVal = d;
last = last * smoothingWeight + (1 - smoothingWeight) * nextVal;
numAccum++;
debiasWeight = 1.0 - Math.pow(smoothingWeight, numAccum);
smoothedData.push(last / debiasWeight);
앱에서 어떻게 보이는지 살펴보세요:

구현 세부 정보
모든 평활화 알고리즘은 샘플링된 데이터에서 실행됩니다. 즉, 1500개 이상의 점을 기록하면 평활화 알고리즘은 서버에서 점을 다운로드한 후에 실행됩니다. 평활화 알고리즘의 의도는 데이터에서 패턴을 빠르게 찾는 데 도움을 주는 것입니다. 많은 수의 기록된 점이 있는 메트릭에 대해 정확한 평활화된 값이 필요한 경우 API를 통해 메트릭을 다운로드하고 자체 평활화 methods를 실행하는 것이 좋습니다.
원본 데이터 숨기기
기본적으로 원본의 평활화되지 않은 데이터가 배경에 희미한 선으로 표시됩니다. 원본 보기 토글을 클릭하여 이 기능을 끄세요.

Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.